Identification of KIAA1018/FAN1, a DNA Repair Nuclease Recruited to DNA Damage by Monoubiquitinated FANCD2

نویسندگان

  • Craig MacKay
  • Anne-Cécile Déclais
  • Cecilia Lundin
  • Ana Agostinho
  • Andrew J. Deans
  • Thomas J. MacArtney
  • Kay Hofmann
  • Anton Gartner
  • Stephen C. West
  • Thomas Helleday
  • David M.J. Lilley
  • John Rouse
چکیده

DNA interstrand crosslinks (ICLs) are highly toxic because they block the progression of replisomes. The Fanconi Anemia (FA) proteins, encoded by genes that are mutated in FA, are important for repair of ICLs. The FA core complex catalyzes the monoubiquitination of FANCD2, and this event is essential for several steps of ICL repair. However, how monoubiquitination of FANCD2 promotes ICL repair at the molecular level is unknown. Here, we describe a highly conserved protein, KIAA1018/MTMR15/FAN1, that interacts with, and is recruited to sites of DNA damage by, the monoubiquitinated form of FANCD2. FAN1 exhibits endonuclease activity toward 5' flaps and has 5' exonuclease activity, and these activities are mediated by an ancient VRR_nuc domain. Depletion of FAN1 from human cells causes hypersensitivity to ICLs, defects in ICL repair, and genome instability. These data at least partly explain how ubiquitination of FANCD2 promotes DNA repair.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deficiency of FANCD2-Associated Nuclease KIAA1018/FAN1 Sensitizes Cells to Interstrand Crosslinking Agents

Cytotoxicity of cisplatin and mitomycin C (MMC) is ascribed largely to their ability to generate interstrand crosslinks (ICLs) in DNA, which block the progression of replication forks. The processing of ICLs requires the Fanconi anemia (FA) pathway, excision repair, and translesion DNA synthesis (TLS). It also requires homologous recombination (HR), which repairs double-strand breaks (DSBs) gen...

متن کامل

Human KIAA1018/FAN1 nuclease is a new mitotic substrate of APC/CCdh1

A recently identified protein, FAN1 (FANCD2-associated nuclease 1, previously known as KIAA1018), is a novel nuclease associated with monoubiquitinated FANCD2 that is required for cellular resistance against DNA interstrand crosslinking (ICL) agents. The mechanisms of FAN1 regulation have not yet been explored. Here, we provide evidence that FAN1 is degraded during mitotic exit, suggesting that...

متن کامل

Ubiquitinated Fancd2 recruits Fan1 to stalled replication forks to prevent genome instability.

Mono-ubiquitination of Fancd2 is essential for repairing DNA interstrand cross-links (ICLs), but the underlying mechanisms are unclear. The Fan1 nuclease, also required for ICL repair, is recruited to ICLs by ubiquitinated (Ub) Fancd2. This could in principle explain how Ub-Fancd2 promotes ICL repair, but we show that recruitment of Fan1 by Ub-Fancd2 is dispensable for ICL repair. Instead, Fan1...

متن کامل

Crystal structure of a Fanconi anemia-associated nuclease homolog bound to 5' flap DNA: basis of interstrand cross-link repair by FAN1.

Fanconi anemia (FA) is an autosomal recessive genetic disorder caused by defects in any of 15 FA genes responsible for processing DNA interstrand cross-links (ICLs). The ultimate outcome of the FA pathway is resolution of cross-links, which requires structure-selective nucleases. FA-associated nuclease 1 (FAN1) is believed to be recruited to lesions by a monoubiquitinated FANCI-FANCD2 (ID) comp...

متن کامل

FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair.

Fanconi anemia (FA) is caused by mutations in 13 Fanc genes and renders cells hypersensitive to DNA interstrand cross-linking (ICL) agents. A central event in the FA pathway is mono-ubiquitylation of the FANCI-FANCD2 (ID) protein complex. Here, we characterize a previously unrecognized nuclease, Fanconi anemia-associated nuclease 1 (FAN1), that promotes ICL repair in a manner strictly dependent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 142  شماره 

صفحات  -

تاریخ انتشار 2010